ACTEX LTAM Study Manual

Fall 2019 Edition

Errata

Apr 14, 2020

C5-11, Example 5.5 Solution: change as follows:
Under UDD,

$$
\begin{gathered}
A_{50: 20 \mid}^{(4) 1}=\frac{i}{i^{(4)}} A_{50: 20 \mid}^{1}=1.01856(0.38844-0.34824)=0.040946 \\
A_{50: 20 \mid}^{(4)}=A^{(4) 1}{ }_{50: 200}+{ }_{20} E_{50}=0.040946+0.34824=0.389186 \\
\ddot{a}_{50: \overline{10}}^{(4)}=\alpha(4) \ddot{a}_{50: 10 \mid}^{(4)}-\beta(4)\left(1-{ }_{10} E_{50}\right)=1.00019 \times 8.0550-0.38272(1-0.60182)=7.904139
\end{gathered}
$$

The annual premium is $5000(0.389186) / 7.904139=246.1913$.
This means that each quarterly premium is $246.1913 / 4=64.548$.

C5-44 16: add (vi) $A_{80}=0.54092$
C5-61 and C5-62 16: change 592.93 to 540.92 , and the final answer to 800.85 .
C5-70 solution to Ex 34, line 3 and 4:
\ldots and hence $k=58$. The percentile premium is $\frac{10000}{\ddot{s}_{59}}=\frac{10000 \times 0.05 / 1.05}{1.05^{59}-1}=28.36$.
C7-22 solution: line7: $q_{44}=0.000710$. The RHS of the above is $9.623667 \ldots$
line 8: ${ }_{9} V=8.003842$
last line for (a): ${ }_{9} V^{\mathrm{mod}}=8.12$.
C7-63 solution 30(b): Change $A_{x+t: \overline{n-t}}$ to $A_{x+t: \overline{n-t}}$
C10-44 line -2 : change 6.292526 to 4.89253
C10-78 \#20(b) $\frac{\mathrm{d}}{\mathrm{d} t}{ }_{t} p_{x}^{02}={ }_{t} p_{x}^{00} \mu_{x+t}^{02}+{ }_{t} p_{x}^{01} \mu_{x+t}^{12}$
C12-75 9 Starting from line 3 of the expression at the middle: $\ldots=8.380037 S$
last 2 lines: $\frac{8.380037 S}{13.5498}=0.618462 S \ldots$ So the ratio is $0.618462 / 1.03^{34}=22.64 \%$
C12-78 12(b) The benefit related to past service is the accrual rate multiplied with the total salary earned from May 1, 2012 to April 30, 2022:
$2.5 \%\left(40000+40000 \times 1.035+\ldots+40000 \times 1.035^{9}\right)=0.025 \times 40000 \times \frac{1.035^{10}-1}{0.035}=11731.39$
The benefit related to future services is $66674.013-11731.39=54942.62$.
C15-26, line -5: $\mathrm{E}[\operatorname{logit}(q(x, t+1))]=\ldots=c^{(1)}+K_{t}^{(1)}+\left(c^{(2)}+K_{t}^{(2)}\right)(x-\bar{x})$
line -2: $\sigma_{K_{1}}^{2}+(x-\bar{x})^{2} \sigma_{K_{2}}^{2}+2(x-\bar{x}) \rho \sigma_{K_{1}} \sigma_{K_{2}}$

Apply the same change to line 3 and line 6 of the solution on C15-27, and to solutions of \#38 and \#39 on C15-45.

C15-28, equation box: change the second $K_{t}^{(2)}$ to $K_{t}^{(3)}$
Apply the same change to C15-37 \#43 and the solution to \#43 (last line) on C15-46.
C16-28, \#5: Change 4000 to 40,000
C16-39, solution to \#4 line 6: $\ddot{a}_{x}^{11}=\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x}^{11}=p_{x}^{11}+\sum_{k=1}^{\infty} v^{k}{ }_{k} p_{x}^{11}=1+a_{x}^{11}$
T1-5 7 Change the first three options as (A) 53% (B) 63% (C) 73%
T1-18 Change the option of 7 from B to C (do the same T1-19 Q7)
T1-20 line 1: $\frac{61.436416 S}{13.5498-1}=4.89541 S$ line 3: So the ratio is $4.89541 / 1.05^{39}=73.01 \%$.

